John L. Jifon

Foliar Potassium (K) Fertilization of Muskmelon: Effects on Fruit Quality

John Jifon & Gene Lester

The problem: Inconsistent Fruit Quality

Taste – Sweetness

Flavor

Appearance

Texture

Nutritional and health benefits

Shelf life

The problem: Inconsistent Fruit Quality

Genetics alone (cultivars) not enough Nutrient imbalance - K

Focus on Potassium Fertilization

Quality nutrient: Numerous Functions in Plants

- 1. Photosynthesis: sugar production
- 2. Assimilate transport; phloem loading/unloading
- 3. Enzyme activation
- 4. Regulation of water loss
- 5. ...many more....

Uptake limitations

- Most K uptake is prior to fruiting
- Soil moisture, temperature, aeration ...root activity
- > Sink competition (roots vs fruits) for carbohydrates
- Competitive interactions with other ions Ca and Mg
- High pH (7.5+)
-many more...

Uptake limitations

- Most K uptake is prior to fruiting
- > Soil moisture, temperature, aeration ...root activity
- Sink competition (roots vs fruits) for carbohydrates
- Competitive interactions with other ions Ca and Mg
- > High pH (7.5+)
-many more...

Consequence:

An apparent K deficiency during the critical fruit development period because root uptake cannot keep up with fruit demand.

Soil characteristics

	2005	2006	2007	CL
рН	8.1 ± 0.2	$\textbf{8.3} \pm \textbf{0.2}$	$\textbf{8.4} \pm \textbf{0.3}$	6.5
NO ₃ -N	29 ± 4	23 ± 2	25 ± 2	-
P	55 ± 3	53 ± 3	51 ± 4	50
K	664 ± 26	612 ± 75	572 ± 13	175
Ca	7307 ± 247	$\textbf{7677} \pm \textbf{574}$	8069 ± 827	180
Mg	442 ± 43	390 ± 31	430 ± 51	50
Na	188 ± 5	168 ± 9	162 ± 3	-

Glasshouse studies

(Lester & Jifon, 2005, 2006)

- Supplementing soil derived K with foliar K applications can overcome the apparent deficiency
- Improve fruit quality (soluble solids & firmness)
- Increase human health quality traits

Objectives of the Current Study:

- Determine extent to which this approach is applicable under field conditions
- Evaluate effects of different K sources on fruit quality.

Treatments:

• Foliar K sources:

1. Control		0% K ₂ O
2. KCI -	potassium chloride	60% K ₂ O
3. KNO ₃ -	potassium nitrate	44% K ₂ O
4. MKP -	monopotassium phosphate (PeaK)	30% K ₂ O
5. K ₂ SO ₄ -	potassium sulfate	50% K ₂ O
6. KTS -	potassium thiosulfate	25% K ₂ O
7. K-Metalos	sate - glycine amino acid-complexed K,	24% K ₂ O
+surfactant	(Silwet)	

Timing & rates

4lbs K₂O/A weekly (6 - 8am) from fruit set to maturation netted muskmelon 'Cruiser'

Crop

Fruit harvests & processing

- Soluble solids
- Total Sugars
- Fruit firmness
- Internal color
- Tissue K content
- Vitamin C
- β-carotene
- Yield

Soil characteristics

	2005	2006	2007	CL
рН	8.1 ± 0.2	$\textbf{8.3} \pm \textbf{0.2}$	$\textbf{8.4} \pm \textbf{0.3}$	6.5
NO ₃ -N	29 ± 4	23 ± 2	25 ± 2	-
P	55 ± 3	53 ± 3	51 ± 4	50
K	664 ± 26	612 ± 75	572 ± 13	175
Ca	7307 ± 247	$\textbf{7677} \pm \textbf{574}$	8069 ± 827	180
Mg	442 ± 43	390 ± 31	430 ± 51	50
Na	188 ± 5	168 ± 9	162 ± 3	-

Petiole [K]

Stem [K]

Fruit [K]

Soluble solids

Fruit sugars

Fruit Texture

Fruit color

β-carotene

Ascorbic acid

Fruit yield, x1000 lbs/acre

Leaf minerals

Weather Conditions

Special Thanks

- Vegetable and Fruit Improvement Center Texas A&M University; "Designing Foods for Health" Program,
- Fluid Fertilizer Foundation,
- International Plant Nutrition Institute,
- Tessenderlo Kerley Inc.,
- Albion Laboratories,
- Rotem BKG LLC,
- Nutra-Flo,
- Western Laboratories

THANK YOU